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Stability Notions

Consider: Autonomous system

ẋ = f(x), x(0) = x0 ∈ Rn

Question: What can be said about x(t) for t→∞?
Recall:

xe ∈ Rn is called an equilibrium if

ẋ = f(xe) = 0

Observe that:

x(t) = xe ∀t ∈ R≥0 if x(0) = xe

(a special solution of the autonomous system)

0

δε

x2

x1

x(0)

Definition (Stability Notations)
Consider ẋ = f(x) with f(0) = 0.

The origin is (Lyapunov) stable if, for any ε > 0 there
exists δ = δ(ε) > 0 such that if

|x(0)| ≤ δ implies |x(t)| ≤ ε ∀ t ≥ 0.

The origin is unstable if it is not stable.

The origin is attractive if there exists δ > 0 such that if
|x(0)| < δ then

lim
t→∞

x(t) = 0.

The origin is asymptotically stable for ẋ = f(x) if it is
both stable and attractive.
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Stability Notions: Simple Examples

Definition (Stability)

Consider ẋ = f(x) with f(0) = 0.
The origin is (Lyapunov) stable if, for any ε > 0 there
exists δ = δ(ε) > 0 such that if

|x(0)| ≤ δ implies |x(t)| ≤ ε ∀ t ≥ 0.

The origin is unstable if it is not stable.

The origin is attractive if there exists δ > 0 such that if
|x(0)| < δ then

lim
t→∞

x(t) = 0.

The origin is asymptotically stable for ẋ = f(x) if it is
both stable and attractive.

Consider the simple autonomous systems (with equilibrium
at the origin):

ẋ = 0, ⇝ x(t) = x0 (1)

ẋ = x, ⇝ x(t) = etx0 (2)

ẋ = −x ⇝ x(t) = e−tx0 (3)

This implies that: The origin of
(1) is stable (but not attractive)

(2) is unstable

(3) is stable and attractive (i.e., asymptotically stable)
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How to verify stability properties without knowledge of solutions?
Consider:

ẋ = f(x) with f(0) = 0, x ∈ Rn

Theorem (Lyapunov stability theorem)

Suppose there exists a continuously differentiable function
V : Rn → R≥0 and α1, α2 ∈ K∞ such that, for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) ←− (Technical condition)
d
dt
V (x(t)) = ⟨∇V (x), f(x)⟩≤ 0 ←− (Decrease condition)

Then the origin is (globally) stable.

Theorem (Asymptotic stability theorem)

Suppose there exists a continuously differentiable function
V : Rn → R≥0 , α1, α2 ∈ K∞ and ρ ∈ P such that, for all
x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) ←− (Technical condition)
⟨∇V (x), f(x)⟩≤ −ρ(|x|) ←− (Decrease condition)

Then the origin is (globally) asymptotically stable.

Interpretation of the decrease condition

(Forward invariance of sublevel sets)
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Then the origin is (globally) asymptotically stable.

Observations & Extensions:
Time derivative of the “generalized energy function” V
along solutions:

d
dt
V (x(t)) = ⟨∇V (x(t)), f(x(t))⟩

Stability of the origin can be concluded without
knowledge of the solution.

(However, we need to find V . . . )

The theorems represent a sufficient condition.
(Necessary conditions are discussed under converse
results.)

Similar results exist for instability/exponential
stability/time-varying systems

Similar results to characterize local properties or
stability of sets exist

Simple exercise: Use V (x) = x2 to show that the origin of
ẋ = 0 is stable

ẋ = −x is asymptotically stable
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