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What is a linear system and why do we care about linear systems?

General (time-invariant) system:

ẋ = f(x), f : Rn → Rn

Linear (time-invariant) system:

ẋ = Ax, A ∈ Rn×n

Properties of linear systems:

We know how the solution looks like
(namely x(t) = eAtx0)

The origin x = 0 is always an equilibrium

The eigenvalues of A completely determine the
stability properties of the origin.

local stability properties are equivalent to global
stability properties

asymptotic stability is equivalent to exponential
stability

stability can be characterized through quadratic
Lyapunov functions: V (x) = xTPx

Theorem (Stability of linear systems)
For the linear system ẋ = Ax, the origin is

1 stable if and only if the eigenvalues of A have negative
or zero real parts and all Jordan blocks corresponding
to eigenvalues with zero real parts are 1× 1;

2 unstable if and only if at least one eigenvalue of A has
a positive real part or zero real part with the
corresponding Jordan block larger than 1× 1;

3 exponentially stable if and only if all the eigenvalues of
A have strictly negative real parts.

Theorem
For the linear system ẋ = Ax, the following are equivalent:

1 The origin is exponentially stable;
2 All eigenvalues of A have strictly negative real parts;
3 For every Q ∈ Sn

>0 there exists a unique P ∈ Sn
>0,

satisfying the Lyapunov equation

ATP + PA = −Q.
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ẋ = Ax, A ∈ Rn×n

Properties of linear systems:
We know how the solution looks like
(namely x(t) = eAtx0)

The origin x = 0 is always an equilibrium

The eigenvalues of A completely determine the
stability properties of the origin.

local stability properties are equivalent to global
stability properties

asymptotic stability is equivalent to exponential
stability

stability can be characterized through quadratic
Lyapunov functions: V (x) = xTPx

Theorem (Stability of linear systems)
For the linear system ẋ = Ax, the origin is
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Linearization (Local exponential stability)

Consider:

ẋ = f(x), f(0) = 0, f cont. differentiable

Define (Jacobian evaluated at the origin):

A =

[
∂f(x)

∂x

]
x=0

Define linearization of ẋ = f(x) at x = 0:

ż(t) = Az(t)

Theorem
Consider ẋ = f(x) (f cont. differentiable) and its
linearization ż = Az. If the origin ze = 0 of ż = Az is
globally exponentially stable then the origin xe = 0 of
ẋ = f(x) is locally exponentially stable.

Discussion:
Local exponential stability properties are preserved
under linearization.

In many cases, the linear approximation of a nonlinear
system can be used to draw local conclusions about
the nonlinear system.

However, this is not always the case!
Exercise:

Consider ẋ = −x3

▶ Show that the origin of the nonlinear system is
asymptotically stable.

▶ Show that the origin of the linearization at x = 0
is not asymptotically stable.

Consider ẋ = x3

▶ Show that the origin of the nonlinear system is
unstable.

▶ Show that the origin of the linearization at x = 0
is not unstable.
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▶ Show that the origin of the nonlinear system is
unstable.

▶ Show that the origin of the linearization at x = 0
is not unstable.

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 3) Linear Systems and Linearization 3 / 5



Linearization (Local exponential stability)

Consider:
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ẋ = f(x), f(0) = 0, f cont. differentiable

Define (Jacobian evaluated at the origin):

A =

[
∂f(x)

∂x

]
x=0

Define linearization of ẋ = f(x) at x = 0:
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Linearization of dynamical systems with inputs and outputs

Consider:

ẋ = f(x, u), (f , cont. differentiable w.r.t. x and u)
y = h(x, u), (h, cont. differentiable w.r.t. x and u)

Recall:
An equilibrium pair (xe, ue) satisfies f(xe, ue) = 0

Without loss of generality f(0, 0) = 0 and h(0, 0) = 0
(due to coordinate transformation)

Linearization:

A =

[
∂f

∂x
(x, u)

]
(x,u)=0

, B =

[
∂f

∂u
(x, u)

]
(x,u)=0

C =

[
∂h

∂x
(x, u)

]
(x,u)=0

, D =

[
∂h

∂u
(x, u)

]
(x,u)=0

Linear system with input and output:

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×m

y = Cx+Du, C ∈ Rp×n, D ∈ Rp×m

Note that
A linear system (with output) is unambiguously defined
through (A,B,C,D)

(A,B) describes the system without output

(A,C) describes output behavior without input

The matrix D (direct feedthrough) is often not present
For a linear system (A,B,C,D) we can define:

controllability (i.e., ability to steer the state from an
arbitrary x0 ∈ Rn to an arbitrary x1 through an
appropriate input selection u(t))

observability (i.e., ability to reconstruct the state x(t) by
observing the output y(t))

Controller design:
For a controllable system, pole placement can be used
to define a stabilizing feedback law u = Kx (i.e., the
origin of ẋ = (A+BK)x is asymptotically stable)

In many cases, locally, the analysis of linear systems is
sufficient to draw conclusions about the corresponding

nonlinear dynamics.
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ẋ = f(x, u), (f , cont. differentiable w.r.t. x and u)
y = h(x, u), (h, cont. differentiable w.r.t. x and u)

Recall:
An equilibrium pair (xe, ue) satisfies f(xe, ue) = 0

Without loss of generality f(0, 0) = 0 and h(0, 0) = 0
(due to coordinate transformation)

Linearization:

A =

[
∂f

∂x
(x, u)

]
(x,u)=0

, B =

[
∂f

∂u
(x, u)

]
(x,u)=0

C =

[
∂h

∂x
(x, u)

]
(x,u)=0

, D =

[
∂h

∂u
(x, u)

]
(x,u)=0

Linear system with input and output:
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