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Fundamental Results in the Frequency Domain

Consider single-input single-output (SISO) linear systems:

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),

Frequency domain representation:

ŷ(s) = G(s)û(s)

Notation and assumptions:
Transfer function G : C → C.

G is a rational function, i.e., there exist polynomial
functions P,Q ∈ R[s] (with coefficients in R) such that

G(s) =
P (s)

Q(s)
.

P,Q are of minimal degree (i.e., they don’t have
common zeros)

We assume x(0) = 0

Consider ψ : R≥0 → Rm with
∫∞
0 ψ(t)e−st dt <∞

for s ∈ C.

Definition (Laplace transform)
Consider ψ : R≥0 → Rm. For s ∈ C ⊂ C for which the
integral is well-defined, the Laplace transform ψ̂ : C → Cm

of ψ is defined as

ψ̂(s)
.
= (Lψ)(s)

.
=

∫ ∞

0
ψ(t)e−st dt.

Definition (Inverse Laplace transform)
Consider φ̂ : C → Cm and let α ∈ R such that
α+ jβ ∈ C ⊂ C for all β ∈ R. Then the inverse Laplace
transform φ : R≥0 → Rm of φ̂ is defined as

φ(t) = (L −1φ̂)(t) =
1

2πj

∫ α+j∞

α−j∞
estφ̂(s) ds

=
eαt

2πj

∫ ∞

−∞
ejwtφ̂(α+ jw) dw.

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 4) Frequency Domain Analysis 2 / 7



Fundamental Results in the Frequency Domain

Consider single-input single-output (SISO) linear systems:
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ŷ(s) = G(s)û(s)
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L −1Lφ(t) = φ(t),
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L (φ(a·))(s) = 1
a
φ̂
(
s
a

)
,

L (φ(· − a))(s) = e−saφ̂ (s) ,

L ( dk

dtk
φ)(s) = skφ̂(s)−

∑k−1
j=1 s

j−1 dk−1−j

dtk−1−j φ(0),

L
(∫ ·

0 φ(τ) dτ
)
(s) = 1

s
φ̂(s).
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From the time domain to the frequency domain (and back)

Consider single-input single-output (SISO) linear systems:

ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),

Application of the Laplace transform:

sx̂(s)− x(0) = Ax̂(s) + bû(s), ŷ(s) = cx̂(s) + dû(s)

Rearrange the terms (x(0) = 0):

ŷ(s) =
(
c(sI −A)−1b+ d

)
û(s)

Identify input output relationship:

G(s) =
ŷ(s)

û(s)
= c(sI −A)−1b+ d (1)

Definition (Realization)
Consider a transfer function G(s) and assume that (1) is
satisfied for (A, b, c, d). Then G(s) is called realizable and
the quadruple (A, b, c, d) is called a realization of G(s).

Proposition (Laplace transform properties)
Consider the signals φ,φ1, φ2 : R≥0 → Rm in the time
domain and constants a ∈ R>0, a1, a2 ∈ R. Then the
Laplace transform and its inverse satisfy the following
properties:

L −1Lφ(t) = φ(t),

L (a1φ+ a2φ2)(s) = a1φ̂1(s) + a2φ̂2(s),
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ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) + du(t),

Application of the Laplace transform:

sx̂(s)− x(0) = Ax̂(s) + bû(s), ŷ(s) = cx̂(s) + dû(s)
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System Interconnections in the Frequency Domain

Consider two systems:

ŷ1(s) = G(s)û1(s)

ŷ2(s) = G(s)û2(s)

Cascade interconnection

ŷ2(s) = G2(s)G1(s)û1(s)

Cascade interconnection û2(s) = ŷ1(s)

G1(s) G2(s)
û1(s) ŷ1(s) = û2(s) ŷ2(s)

G2(s)G1(s)
û1(s) ŷ2(s)
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System Interconnections in the Frequency Domain

Consider:

ŷ(s) = G(s)û(s)

û(s) = v̂(s)− kŷ(s)

Feedback interconnection:

+ G(s)

−k

v̂(s) û(s) ŷ(s)

[1 +G(s)k]−1G(s)
v̂(s) ŷ(s)

Stability and robustness analysis tools:
Bode diagram

Nyquist diagram (and Nyquist criterion)
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