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Discrete Time Systems – Fundamentals

Discrete time system (with output):

xd(k + 1) = F (xd(k), ud(k)), xd(0) = xd,0 ∈ Rn

yd(k) = H(xd(k), ud(k))

Time-varying discrete time system (k ≥ k0 ≥ 0):

xd(k + 1) = F (k, xd(k)), xd(k0) = xd,0 ∈ Rn

Time invariant discrete time systems without input:

xd(k + 1) = F (xd(k)), xd(0) = xd,0 ∈ Rn,

Shorthand notation for difference equations:

x+
d = F (xd, ud),

Definition (Equilibrium)

The point xe
d ∈ Rn is called equilibrium if xe

d = F (xe
d)

or xe
d = F (k, xe

d) for all k ∈ N is satisfied.

The pair (xe
d, u

e
d) ∈ Rn × Rm is called equilibrium

pair of the system if xe
d = F (xe

d, u
e
d) holds.

Continuous time system (with output):

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn

y(t) = h(x(t), u(t))

Time-varying continuous time system:

ẋ(t) = f(t, x(t)), xd(t0) = x0 ∈ Rn

Time invariant discrete time systems without input:

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn,

Shorthand notation for difference equations:

ẋ = f(x, u)

Definition (Equilibrium)

The point xe ∈ Rn is called equilibrium if 0 = f(xe)
or 0 = f(t, xe) for all t ∈ R≥0 is satisfied.

The pair (xe, ue) ∈ Rn × Rm is called equilibrium
pair of the system if 0 = f(xe, ue) holds.
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ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn

y(t) = h(x(t), u(t))

Time-varying continuous time system:
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Sampling: From Continuous to Discrete Time

Derivative for continuously differentiable function:

d
dt
x(t) = lim

∆→0

x(t+∆)− x(t)

∆

Difference quotient (for ∆ > 0 small):

x(t+∆)− x(t)

∆
≈ d

dt
x(t) = ẋ(t) = f(x(t), u(t))

or equivalently

x(t+∆) ≈ x(t) + ∆f(x(t), u(t))

Approximated discrete time system (identify t with k ·∆)

x+
d = F (xd, ud)

.
= xd +∆f(xd, ud)

⇝ This discretization is known as (explicit) Euler method.

Note that:
Continuous time: x : R≥0 → Rn and u : R≥0 → Rm

Discrete time: xd : N → Rn and ud : N → Rm

Zero-order hold: for all k ∈ N, for all t ∈ [0,∆)

xd(k) = x(∆k) = x(t+∆k)

ud(k) = u(∆k) = u(t+∆k)

(restrict x and u to piecewise constant functions)

Sample-and-hold input: (with sampling rate ∆)

u(∆k) = u(t+∆k), k ∈ N, ∀ t ∈ [0,∆)

Digital controller:
apply a piecewise constant sample-and-hold input to
a continuous time system.

Solution corresponding to sample-and-hold input (∆ = 1)
and continuous input
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x(t) = ẋ(t) = f(x(t), u(t))

or equivalently

x(t+∆) ≈ x(t) + ∆f(x(t), u(t))

Approximated discrete time system (identify t with k ·∆)

x+
d = F (xd, ud)

.
= xd +∆f(xd, ud)

⇝ This discretization is known as (explicit) Euler method.

Note that:
Continuous time: x : R≥0 → Rn and u : R≥0 → Rm

Discrete time: xd : N → Rn and ud : N → Rm

Zero-order hold: for all k ∈ N, for all t ∈ [0,∆)

xd(k) = x(∆k) = x(t+∆k)

ud(k) = u(∆k) = u(t+∆k)

(restrict x and u to piecewise constant functions)

Sample-and-hold input: (with sampling rate ∆)

u(∆k) = u(t+∆k), k ∈ N, ∀ t ∈ [0,∆)

Digital controller:
apply a piecewise constant sample-and-hold input to
a continuous time system.

Solution corresponding to sample-and-hold input (∆ = 1)
and continuous input

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 5) Discrete Time Systems 3 / 8



Sampling: From Continuous to Discrete Time

Derivative for continuously differentiable function:

d
dt
x(t) = lim

∆→0

x(t+∆)− x(t)

∆

Difference quotient (for ∆ > 0 small):

x(t+∆)− x(t)

∆
≈ d

dt
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Euler Discretization Example (and Higher Order Discretization Schemes)

Approximation of ẋ = 1.1x

Euler discretization: x+ = (1 + 1.1∆)x

0 1 2 3

0

0.5

1

1.5

2

2.5

Euler method:

x(t+∆) ≈ x(t) + ∆f(x(t), ud)

Heun method:

x(t+∆) ≈ x(t) + ∆
2
f(x(t), ud)

+ ∆
2
f(x(t) + ∆f(x(t), ud), ud)

0 1 2 3
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0.5
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1.5

2

2.5
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Stability Notions

Discrete time systems: Consider

x+ = F (x), x(0) = x0 ∈ Rn

Definition
Consider the origin of the discrete time system.

1. (Stability) The origin is Lyapunov stable (or simply
stable) if, for any ε > 0 there exists δ > 0 such that if
|x(0)| ≤ δ then, for all k ≥ 0,

|x(k)| ≤ ε.

2. (Instability) The origin is unstable if it is not stable.

3. (Attractivity) The origin is attractive if there exists
δ > 0 such that if |x(0)| < δ then

lim
k→∞

x(k) = 0.

4. (Asymptotic stability) The origin is asymptotically
stable if it is both stable and attractive.

Continuous time systems: Consider

ẋ = f(x), x(0) = x0 ∈ Rn

Definition
Consider the origin of the continuous time system.

1. (Stability) The origin is Lyapunov stable (or simply
stable) if, for any ε > 0 there exists δ > 0 such that if
|x(0)| ≤ δ then, for all t ≥ 0,

|x(t)| ≤ ε.

2. (Instability) The origin is unstable if it is not stable.

3. (Attractivity) The origin is attractive if there exists
δ > 0 such that if |x(0)| < δ then

lim
t→∞

x(t) = 0.

4. (Asymptotic stability) The origin is asymptotically
stable if it is both stable and attractive.
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Lyapunov Characterizations
Consider x+ = f(x), 0 = f(0), 0 ∈ D ⊂ Rn open.

Theorem (Lyapunov stability theorem)
Suppose there exists a continuous function V : D → R≥0

and functions α1, α2 ∈ K∞ such that, for all x ∈ D,

α1(|x|) ≤ V (x) ≤ α2(|x|) (1)
V (f(x))− V (x) ≤ 0

Then the origin is stable.

Note that
Decrease condition V (x+) = V (f(x)) ≤ V (x)

differentiability of V (or even continuity) is not required

Theorem (Asymptotic stability)
Suppose there exists a continuous function V : D → R≥0,
and functions α1, α2 ∈ K∞, ρ ∈ P satisfying ρ(s) < s for
all s > 0, such that, for all x ∈ D, (1) holds and

V (f(x))− V (x) ≤ −ρ(V (x)).

Then the origin is asymptotically stable.

Consider ẋ = f(x), 0 = f(0), 0 ∈ D ⊂ Rn open.

Theorem (Lyapunov stability theorem)
Suppose there exists a smooth function V : D → R≥0 and
functions α1, α2 ∈ K∞ such that, for all x ∈ D,

α1(|x|) ≤ V (x) ≤ α2(|x|) (2)
⟨∇V (x), f(x)⟩ ≤ 0

Then the origin is stable.

Theorem (Asymptotic stability)
Suppose there exists a smooth function V : D → R≥0, and
functions α1, α2 ∈ K∞, ρ ∈ P, such that, for all x ∈ D, (2)
holds and

⟨∇V (x), f(x)⟩ ≤ −ρ(V (x)).

Then the origin is asymptotically stable.
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Linear systems
Consider the discrete time linear system

x+ = Ax, x(0) ∈ Rn [Solution x(k) = Akx(0)]

Theorem
The following properties are equivalent:

1 The origin xe = 0 is exponentially stable;
2 The eigenvalues λ1, . . . , λn ∈ C of A satisfy |λi| < 1

for all i = 1, . . . , n; and
3 For Q ∈ Sn

>0 there exists a unique P ∈ Sn
>0

satisfying the discrete time Lyapunov equation

ATPA− P = −Q.

A matrix A which satisfies |λi| < 1 for all i = 1, . . . , n is
called a Schur matrix.

Theorem

If the origin of z+ = Az with A =
[
∂F
∂x

(x)
]
x=0

is globally

exponentially stable, then the origin of x+ = F (x),
0 = F (0), is locally exponentially stable.

Consider the continuous time linear system

ẋ = Ax, x(0) ∈ Rn [Solution x(t) = eAtx(0)]

Theorem
The following properties are equivalent:

1 The origin xe = 0 is exponentially stable;
2 The eigenvalues λ1, . . . , λn ∈ C of A satisfy λi ∈ C−

for all i = 1, . . . , n; and
3 For Q ∈ Sn

>0 there exists a unique P ∈ Sn
>0

satisfying the continuous time Lyapunov equation

ATP + PA = −Q.

A matrix A which satisfies λi ∈ C− for all i = 1, . . . , n is
called a Hurwitz matrix.

Theorem

If the origin of ż = Az with A =
[
∂f
∂x

(x)
]
x=0

is globally

exponentially stable, then the origin of ẋ = f(x), 0 = f(0),
is locally exponentially stable.
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2 The eigenvalues λ1, . . . , λn ∈ C of A satisfy λi ∈ C−

for all i = 1, . . . , n; and
3 For Q ∈ Sn

>0 there exists a unique P ∈ Sn
>0

satisfying the continuous time Lyapunov equation

ATP + PA = −Q.

A matrix A which satisfies λi ∈ C− for all i = 1, . . . , n is
called a Hurwitz matrix.

Theorem

If the origin of ż = Az with A =
[
∂f
∂x

(x)
]
x=0

is globally

exponentially stable, then the origin of ẋ = f(x), 0 = f(0),
is locally exponentially stable.
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5. Discrete Time Systems

6. Absolute Stability
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