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Motivation & Definition

Robust Stability: Consider

ẋ = Ax+ Ew, x(0) = x0 ∈ Rn,

with A Hurwitz, and external disturbance w

Recall the solution (x(t), t ∈ R≥0)

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Ew(τ)dτ

We can calculate/estimate the impact of the disturbance:

|x(t)| ≤
∣∣∣eAtx(0)

∣∣∣+ ∣∣∣∣∫ t

0
eA(t−τ)Ew(τ)dτ

∣∣∣∣
≤

∥∥∥eAt
∥∥∥ |x(0)|+

∫ t

0

∥∥∥eA(t−τ)
∥∥∥ ∥E∥|w(τ)|dτ

≤
∥∥∥eAt

∥∥∥|x(0)|+ (
∥E∥

∫ ∞

0

∥∥∥eAτ
∥∥∥dτ)ess sup

τ≥0
|w(τ)|

If we define γ = ∥E∥
∫∞
0

∥∥eAτ
∥∥ dτ , then

|x(t)| ≤
∥∥∥eAt

∥∥∥ |x(0)|+ γ∥w∥L∞ .

This bound consists of two components:
a transient bound; the decaying effect of the initial
state x(0)

an estimate of the worst-case or largest input
disturbance, w, that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:

ẋ = f(x,w), x(0) = x0 ∈ Rn

with w : R≥0 → Rm. The set of allowable input functions

W = {w : R≥0 → Rm| w essentially bounded}.

Definition (Input-to-state stability)
The system is said to be input-to-state stable (ISS) if there
exist β ∈ KL and γ ∈ K such that solutions satisfy

|x(t)| ≤ β(|x(0)|, t) + γ (∥w∥L∞ )

for all x ∈ Rn, w ∈ W, and t ≥ 0.

• γ ∈ K: ISS-gain; • β ∈ KL: transient bound.
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ẋ = f(x,w), x(0) = x0 ∈ Rn

with w : R≥0 → Rm. The set of allowable input functions

W = {w : R≥0 → Rm| w essentially bounded}.

Definition (Input-to-state stability)
The system is said to be input-to-state stable (ISS) if there
exist β ∈ KL and γ ∈ K such that solutions satisfy

|x(t)| ≤ β(|x(0)|, t) + γ (∥w∥L∞ )

for all x ∈ Rn, w ∈ W, and t ≥ 0.

• γ ∈ K: ISS-gain; • β ∈ KL: transient bound.

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 7) Input-to-State Stability 2 / 7



Motivation & Definition

This bound consists of two components:
a transient bound; the decaying effect of the initial
state x(0)

an estimate of the worst-case or largest input
disturbance, w, that impacts the system.

Input-to-state stability (ISS) for nonlinear systems:
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• γ ∈ K: ISS-gain; • β ∈ KL: transient bound.

For linear systems we can conclude that:
A Hurwitz is sufficient for the system to be ISS.

Example
Consider the nonlinear/bilinear system:

ẋ = −x+ xw.

The system is 0-input globally asymptotically stable
since w = 0 implies ẋ = −x and so x(t) = x(0)e−t

However, consider the bounded input/disturbance
w = 2. Then ẋ = x and so x(t) = x(0)et.

Consequently, it is impossible to find β ∈ KL and
γ ∈ K such that

|x(t)| = |x(0)|et ≤ β(|x(0)|, t) + γ(2).
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Lyapunov Characterizations

Definition (Input-to-state stability)
ẋ = f(x,w) is said to be input-to-state stable (ISS) if there
exist β ∈ KL and γ ∈ K such that solutions satisfy

|x(t)| ≤ β(|x(0)|, t) + γ (∥w∥L∞ )

for all x ∈ Rn, w ∈ W, and t ≥ 0.

Theorem (ISS-Lyapunov function)
ẋ = f(x,w) is ISS if and only if there exist a continuously
differentiable function V : Rn → R≥0 and
α1, α2, α3, σ ∈ K∞ such that ∀ x ∈ Rn, ∀ w ∈ Rm

α1(|x|) ≤ V (x) ≤ α2(|x|)
⟨∇V (x), f(x,w)⟩ ≤ −α3(|x|) + σ(|w|).

Example

Consider

ẋ = f(x,w) = −x− x3 + xw, x(0) = x0 ∈ R

The candidate ISS-Lyapunov function V (x) = 1
2
x2

satisfies

⟨∇V (x), f(x,w)⟩ = ⟨x,−x− x3 + xw⟩

= −x2 − x4 + x2w

How to proceed here . . . ?
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Lyapunov Characterizations & Young’s Inequality

Example

Consider

ẋ = f(x,w) = −x− x3 + xw, x(0) = x0 ∈ R

The candidate ISS-Lyapunov function V (x) = 1
2
x2

satisfies

⟨∇V (x), f(x,w)⟩ = ⟨x,−x− x3 + xw⟩

= −x2 − x4 + x2w

≤ −x2 − x4 + 1
2
x4 + 1

2
w2

= −x2 − 1
2
x4 + 1

2
w2

Define α(s)
.
= s2 + 1

2
s4 and σ(s)

.
= 1

2
s2, Then

V̇ (x) ≤ −α(|x|) + σ(|w|)

i.e., V is an ISS-Lyapunov function and the system is ISS.

⇝ Observe that ẋ = −x− x3 + xw is ISS while
ẋ = −x+ xw is not ISS (even though the linearizations are

the same)

Detour....

Lemma (Young’s inequality)

Let p, q ∈ R>0 such that 1
p
+ 1

q
= 1. Then for any

x, y ∈ Rn the inequality

xT y ≤ 1
p
|x|p + 1

q
|y|q

is satisfied.

Application: Let p = q = 2, ε > 0, a, b ∈ Rn. Then

aT b = (εa)T ( 1
ε
b) ≤ ε2

2
|a|2 + 1

2ε2
|b|2
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ẋ = f(x,w) = −x− x3 + xw, x(0) = x0 ∈ R

The candidate ISS-Lyapunov function V (x) = 1
2
x2

satisfies

⟨∇V (x), f(x,w)⟩ = ⟨x,−x− x3 + xw⟩

= −x2 − x4 + x2w

≤ −x2 − x4 + 1
2
x4 + 1

2
w2

= −x2 − 1
2
x4 + 1

2
w2

Define α(s)
.
= s2 + 1

2
s4 and σ(s)

.
= 1

2
s2, Then

V̇ (x) ≤ −α(|x|) + σ(|w|)

i.e., V is an ISS-Lyapunov function and the system is ISS.
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ẋ = −x+ xw is not ISS (even though the linearizations are

the same)

Detour....

Lemma (Young’s inequality)

Let p, q ∈ R>0 such that 1
p
+ 1

q
= 1. Then for any

x, y ∈ Rn the inequality

xT y ≤ 1
p
|x|p + 1

q
|y|q

is satisfied.

Application: Let p = q = 2, ε > 0, a, b ∈ Rn. Then

aT b = (εa)T ( 1
ε
b) ≤ ε2

2
|a|2 + 1

2ε2
|b|2

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 7) Input-to-State Stability 5 / 7



Application: System Interconnection

Consider

ẋ1 = f1(x1, w1)

ẋ2 = f2(x2, w2)

If system 1 and system 2 are ISS
is the cascade interconnection ISS?

is the feedback interconnetion ISS?

ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)
w1 w2 = x1 x2

ẋ1 = f1(x1, w1) ẋ2 = f2(x2, w2)

k(x2)

w1 = k(x2) w2 = x1 x2
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Introduction to Nonlinear Control: Stability, control design, and estimation

Part I: Dynamical Systems

1. Nonlinear Systems -
Fundamentals & Examples

2. Nonlinear Systems - Stability
Notions

3. Linear Systems and Linearization

4. Frequency Domain Analysis

5. Discrete Time Systems

6. Absolute Stability

7. Input-to-State Stability

Part II: Controller Design

8. LMI Based Controller and
Antiwindup Designs

9. Control Lyapunov Functions

10. Sliding Mode Control

11. Adaptive Control

12. Introduction to Differential
Geometric Methods

13. Output Regulation

14. Optimal Control

15. Model Predictive Control

Part III: Observer Design & Estimation
16. Observer Design for Linear

Systems

17. Extended & Unscented Kalman
Filter & Moving Horizon
Estimation

18. Observer Design for Nonlinear
Systems
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