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Motivations and Examples

Consider a parameter-dependent system:

ẋ = f(x, u, θ), (θ ∈ Rq constant but unknown)

Goal: Stabilization of the origin.

Simple motivating example:

ẋ = θx+ u

Linear controller: For u = −kx it holds that

ẋ = −(k − θ)x

i.e., asymptotic stability for (k − θ) > 0 and instability
for (k − θ) < 0.

What if a bound on |θ| is not known?

Nonlinear controller: u = −k1x− k2x3, k1, k2 ∈ R>0,

ẋ = (θ − k1)x− k2x
3

=
[
(θ − k1)− k2x

2
]
x

It holds that:
▶ θ ≤ k1: unique equilibrium in R

xe = 0

▶ θ > k1: three equilibria in R

xe ∈
{
0,±

√
θ−k1
k2

}
Consider V (x) = 1

2
x2 which satisfies

V̇ (x) = −k1x
2 − k2x

4 + θx2

≤ −k1x
2 − (k2 − 1

2
)x4 + 1

2
θ2,

thus it holds that

x(t)
t→∞→ Sθ =

{
x ∈ R

∣∣∣ |x| ≤ √
1
k1

|θ|
}

We can conclude that
Bound on θ known: Global asymptotic stability of 0
can be guaranteed (k1 > θ)

Bound on θ not known: Convergence to neighborhood
around 0 can be guaranteed
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Motivations and Examples: Dynamic Controller Design

Consider a parameter-dependent system:

ẋ = f(x, u, θ), (θ ∈ Rq constant but unknown)

Goal: Stabilization of the origin.

Simple motivating example:

ẋ = θx+ u

Consider a dynamic controller:

u = −k1x− ξx

ξ̇ = x2

Closed loop dynamics[
ẋ

ξ̇

]
=

[
θx− k1x− ξx

x2

]
and in terms of error dynamics: θ̂ = ξ − θ[

ẋ
˙̂
θ

]
=

[
−θ̂x− k1x

x2

]

Consider candidate Lyapunov function

V (x, θ̂) = 1
2
x2 + 1

2
θ̂2

which satisfies

V̇ (x, θ̂) = (−θ̂x− k1x)x+ θ̂x2

= −k1x
2

This the LaSalle-Yoshizawa theorem implies that

▶ x(t)
t→∞→ 0 for all (x0, ξ0) ∈ R2

▶ Convergence ξ(t)
t→∞→ θ is not guaranteed

Dynamic controller designs are can be used to guarantee
global convergence properties!
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Model Reference Adaptive Control

Consider linear systems

ẋ = Ax+Bu

with unknown matrices A, B.

Goal: Design a controller so that the unknown system
behaves like

˙̄x = Āx̄+ B̄ue

▶ Ā, B̄: design parameters
▶ ue: constant reference

Note that: For Ā Hurwitz, ue defines asymp. stable
equilibrium

x̄e = −Ā−1B̄ue

Control law:

u = M(θ)ue + L(θ)x,

▶ M(·), L(·), to be designed

Closed-loop dynamics:

ẋ = Ax+B(M(θ)ue + L(θ)x)

= (A+BL(θ))x+BM(θ)ue

= Acl(θ)x+Bcl(θ)u
e

where

Acl(θ) = A+BL(θ), Bcl(θ) = BM(θ)

Compatibility conditions

Acl(θ) = Ā ⇐⇒ BL(θ) = Ā−A,

Bcl(θ) = B̄ ⇐⇒ BM(θ) = B̄.

Overall system dynamics ẋ
˙̄x

θ̇

 =

 (A+BL(θ))x+BM(θ)ue

Āx̄+ B̄ue

Ψ(x, x̄, ue)


for Ψ defined appropriately so that x(t) → x̄(t)
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▶ Ā, B̄: design parameters
▶ ue: constant reference
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Adaptive Backstepping (for Nonlinear Dynamics)

Systems in parametric strict-feedback form:

ẋ1 = x2 + ϕ1(x1)
T θ

ẋ2 = x3 + ϕ2(x1, x2)
T θ

...

ẋn−1 = xn + ϕn−1(x1, . . . , xn−1)
T θ

ẋn = β(x)u+ ϕn(x)
T θ

where β(x) ̸= 0 for all x ∈ Rn

Theorem
Let ci > 0 for i ∈ {1, . . . , n}. Consider the adaptive controller

u = 1
β(x)

αn(x, ϑ1, . . . , ϑn)

ϑ̇i = Γ
(
ϕi(x1, . . . , xi)−

∑i−1
j=1

∂αi−1

∂xj
ϕj(x1, . . . xj)

)
zi, i = 1, . . . , n,

where ϑi ∈ Rq are multiple estimates of θ, Γ > 0 is the adaptation gain
matrix, and the variables zi and the stabilizing functions

αi = αi(x1, . . . , xi, ϑ1, . . . , ϑi), αi : Ri+i·q → R, i = 1, . . . , n,

are defined by the following recursive expressions (and z0 ≡ 0, α0 ≡ 0 for
notational convenience)

zi = xi − αi−1(x1, . . . , xi, ϑ1, . . . , ϑi)

αi = −cizi − zi−1 −
(
ϕi −

∑i−1
j=1

∂αi−1

∂xj
ϕj

)T
ϑi

+
∑i−1

j=1

(
∂αi−1

∂xj
xj+1 +

∂αi−1

∂ϑj
Γ
(
ϕj −

∑j−1
k=1

∂αj−1

∂xk
ϕk

)
zj

)
.

This adaptive controller guarantees global boundedness of x(·), ϑ1(·),
. . . , ϑn(·), and x1(t) → 0, xi(t) → xe

i for i = 2, . . . , n for t → ∞ where

xe
i = −θTϕi−1(0, x

e
2, . . . , x

e
i−1), i = 2, . . . , n.
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