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Introductory Examples: (Example 1)

Consider (nonlinear system)

ẋ = x3 + u, y = x.

Goal:

Stabilize the state/output y = x = 0.

Solution:
Linear Controller Design:

▶ Linearization about the origin:

ẋ = u

Natural stabilizing controller selection

u = −kx (k > 0)

Nonlinear closed loop dynamics:

ẋ = x(x2 − k), xe ∈ {0,±
√
k}.

Note that:
▶ Origin is locally asymptotically stable.
▶ Region of attraction increases with k.

Nonlinear Controller Design:
▶ Consider the nonlinear feedback

u = −x3 + v, v to be designed

Closed-loop system

ẋ = v

Natural feedback selection

v = −kx (k > 0)

Closed-loop system with globally asymptotically
stable origin k:

ẋ = −kx

Overall feedback law:

u = −x3 − kx

Note that:
▶ Coordinate transformation in the input u leads to

a linear system.
▶ Locally both control laws stabilize the origin, but

the coordinate transformation provides a
stronger result.
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Introductory Examples: (Example 2)

Consider second-order system

ẋ1 = x2 + x2
1

ẋ2 = −2x3
1 − 2x1x2 + u

y = x1,

Consider change of coordinates

z1 = x1

z2 = x2 + x2
1

System in new coordinates:

ż1 = z2

ż2 = ẋ2 + 2x1ẋ1 = u

y = z1,

Note that: The system is linear in z!

Globally exponentially stabilizing feedback law:

u = −k1z1 − k2z2

= −k1x1 − k2
(
x2 + x2

1

)
for k1, k2 > 0.
(Can be easily verified by checking the eigenvalues
of the closed-loop system.)
Note that:

Coordinate transformation allows us to stabilize
and analyze a linear system instead of a
nonlinear system.

x → 0 is equivalent to z → 0.

For the input-output behavior it is not important
if the dynamics are written in terms of x or z.
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Introductory Examples: (Example 3)

Consider third-order nonlinear system:

ẋ1 = x2

ẋ2 = x3
3 + u

ẋ3 = x1 + x3
3

y = x1,

Consider change of coordinates:

z1 = x3

z2 = x1 + x3
3

z3 = x2 + 3x1x
2
3 + 3x5

3.

and initial feedback (with v to be designed):

u = −x3
3 − 3x2x

2
3 − 6x2

1x3 − 21x1x
4
3 − 15x7

3 + v,

Leads to linear states (but a nonlinear output):

ż1 = z2
ż2 = z3
ż3 = v

y = z2 − z31 .

The feedback law

u = −x3
3 + v

Leads to linear input-output relationship from v to y:

ẋ1 = x2

ẋ2 = v
ẋ3 = x1 + x3

3

y = x1,

Here,

the “internal” x3 dynamics, which are not visible
through the output, are nonlinear.

we are able to partially linearize the dynamics

For the linear dynamics, v can be defined such
that the origin z = 0 is asymptotically stable
(i.e., y converges to zero).

For the nonlinear dynamics a controller
guaranteeing y(t) → 0 for t → ∞ can be
defined using pole placement. But is the origin
asymptotically stable?
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In this chapter we will discuss . . .

Feedback linearization

Input-to-state linearization

Input-to-output linearization

Relies on properties such as

relative degree

zero dynamics

This also allows us to talk about

nonlinear controllability (accessibility)

Relies on concepts such as

coordinate transformation of the state

coordinate transformation of the input

(repeated) Lie derivatives (λ : Rn → Rm,
f : Rn → Rn)

Lfλ(x) =
∂λ

∂x
(x) · f(x)

Lk
fλ(x) =

∂

∂x

(
Lk−1

f λ(x)
)
f(x), L0

fλ(x) = λ(x)
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Introduction to Nonlinear Control: Stability, control design, and estimation

Part I: Dynamical Systems

1. Nonlinear Systems -
Fundamentals & Examples

2. Nonlinear Systems - Stability
Notions

3. Linear Systems and Linearization

4. Frequency Domain Analysis

5. Discrete Time Systems

6. Absolute Stability

7. Input-to-State Stability

Part II: Controller Design

8. LMI Based Controller and
Antiwindup Designs

9. Control Lyapunov Functions

10. Sliding Mode Control

11. Adaptive Control

12. Introduction to Differential
Geometric Methods

13. Output Regulation

14. Optimal Control

15. Model Predictive Control

Part III: Observer Design & Estimation
16. Observer Design for Linear

Systems

17. Extended & Unscented Kalman
Filter & Moving Horizon
Estimation

18. Observer Design for Nonlinear
Systems

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 12) Introduction to Differential Geometric Methods 6 / 6


