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Optimal Control – Continuous Time Setting

Consider
continuous time system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn (1)

with state x ∈ Rn and input u ∈ Rm.

cost functional (or performance criterion)

J(x0, u(·)) =
∫ ∞

0
ℓ(x(τ), u(τ))dτ ∈ R ∪ {±∞}

defined through running costs ℓ : Rn × Rm → R
This defines an

(optimal) value function: V : Rn → R≥0,

V (x0) =min
u(·)

J(x0, u(·))

subject to (1).

optimal input trajectory:

u⋆(·) = argmin
u(·)

J(x0, u(·)).

We hope to find a feedback law: (µ : Rn → Rm)

µ(x⋆(t)) = u⋆(t) ∀ t ∈ R≥0.

Here
(x⋆(·), u⋆(·)) is an optimal solution pair

x⋆(·) uniquely defined through u⋆(·) and x⋆(0) = x0

Example:
linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn

with quadratic cost function: (Q ≥ 0, R > 0)

J(x0, u(·)) =
∫ ∞

0

(
xT (τ)Qx(τ) + uT (τ)Ru(τ)

)
dτ

Unfortunately:
for general nonlinear systems and running costs, the
optimization problem is usually intractable.
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Optimal Control – Linear Quadratic Regulator

Consider
continuous time system

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn (1)

with state x ∈ Rn and input u ∈ Rm.

cost functional (or performance criterion)

J(x0, u(·)) =
∫ ∞

0
ℓ(x(τ), u(τ))dτ ∈ R ∪ {±∞}

defined through running costs ℓ(x, u) ≥ 0

This defines an
(optimal) value function: V : Rn → R≥0,

V (x0) =min
u(·)

J(x0, u(·))

subject to (1).

optimal input trajectory:

u⋆(·) = argmin
u(·)

J(x0, u(·)).

The Linear Quadratic Regulator (Example)

Linear system:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn

Quadratic cost function:

J(x0, u(·)) =
∫ ∞

0

(
xT (τ)Qx(τ) + uT (τ)Ru(τ)

)
dτ

Theorem (Linear quadratic regulator (LQR))
Let Q ≥ 0, R > 0. If there exists P > 0 satisfying the
continuous time algebraic Riccati equation

ATP + PA+Q− PBR−1BTP = 0

and if A−BR−1BTP

is Hurwitz, then the optimal feedback law and value
function are given by

µ(x) = −R−1BTPx

V (x0) = xT
0 Px0.
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Optimal Control – Discrete Time Setting

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0 (2)

Cost functional

J(x0, u(·)) =
∞∑

k=0

ℓ(x(k), u(k)) ∈ {±∞}

(with running costs ℓ : Rn × Rm → R)

(optimal) value function:

V (x0) = min
u(·)∈U

J(x0, u(·))

subject to (2)

optimal input trajectory:

u⋆(·) = argmin
u(·)

J(x0, u(·)).

Optimal solution pair: (x⋆(·), u⋆(·))

The Linear Quadratic Regulator (Example)

Linear system:

x(k + 1) = Ax(k) +Bu(k), x(0) = x0 ∈ Rn

Quadratic cost function:

J(x0, u(·)) =
∞∑

k=0

(
x(τ)TQx(τ) + u(τ)TRu(τ)

)
dτ

Theorem (Linear quadratic regulator (LQR))
Let Q ≥ 0, R > 0. If there exists P > 0 satisfying the
discrete time algebraic Riccati equation

Q+ATPA− P −ATPB(R+BTPB)−1BTPA = 0

and if A−B(R+BTPB)−1BTPA

is Schur, then the optimal feedback law and value function
are given by

µ(x) = −(R+BTPB)−1BTPAx

V (x0) = xT
0 Px0.
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From Infinite to Finite Dimensional Optimization

Consider

x(k + 1) = f(x(k), u(k)), x(0) = x0 (2)

Cost functional

J(x0, u(·)) =
∞∑

k=0

ℓ(x(k), u(k)) ∈ {±∞}

(with running costs ℓ : Rn × Rm → R)

(optimal) value function:

V (x0) =min
u(·)

J(x0, u(·))

subject to (2)

optimal input trajectory:

u⋆(·) = argmin
u(·)

J(x0, u(·)).

Optimal solution pair: (x⋆(·), u⋆(·))

Recapitulation of results:
(x⋆(·), u⋆(·)) is optimal with respect to a specific
measure (i.e., a specific cost functional).

To obtain the optimal solution pair an infinite
dimensional optimization problem needs to be solved.

⇝ In general, the value function and the solution pair can
only be calculated under specific assumptions (e.g.
linear dynamics)

⇝ In general, only open loop solutions (x⋆(·), u⋆(·))
(instead of optimal feedback law µ(x(t)) are obtained)

How can we
obtain results for nonlinear systems?

incorporate state/input constraints?

simplify the infinite horizon (or infinite dimensional)
optimization problem?
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From Infinite to Finite Dimensional Optimization: The Principle of Optimality
The principle of optimality:

In words, for any point on an optimal solution x⋆(·),
the remaining control inputs u⋆(·) are also optimal.

More formally:
Assume that solutions of the optimal control problem
are unique.

For x0 ∈ Rn let (x⋆(·;x0), u⋆(·;x0)) be the optimal
solution pair of

u⋆(·;x0) = argmin
u(·)

J(x0, u(·))

subject to dynamics & initial cond.

For any T ≥ 0 let (x̄⋆(·;x⋆(T ;x0)), ū⋆(·;x⋆(T ;x0)))
be the optimal solution pair of

ū⋆(·;x⋆(T ;x0)) = argmin
u(·)

J(x⋆(T ;x0), u(·))

subject to dynamics & initial cond.

Then the principle of optimality states that

ū⋆(·;x⋆(T ;x0)) = u⋆(·+ T ;x0)

x̄⋆(·;x⋆(T ;x0)) = x⋆(·+ T ;x0)

x0

0 x1

x2

x⋆(T ;x0)

x⋆(·;x0)

x̄⋆(·;x⋆(T ;x0))

Note that:
In the case that optimal solutions are not unique, ‘only’

J(x⋆(T ;x), ū⋆(·;x⋆(T ;x)))=J(x⋆(T ;x), u⋆(·+ T ;x))

is guaranteed.

Same result in the discrete time setting
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Constrained Optimal Control for Linear Systems

Restrict the definitions to a finite horizon:

UN = {uN (·) = (u(0), . . . , u(N − 1))| u(·) ∈ U}

JN (x0, uN (·)) =
∑N−1

k=0 ℓ(x(k), u(k))

Continue to rewrite the OCP:

min
u(·)∈UU

J(x0, u(·))

= min
uN (·)∈UN

U

∑N−1
k=0 xTQx+ uTRu+ x(N)TPF x(N)

= min
uN (·)∈UN

U

JN (x0, uN (·)) + x(N)TPF x(N)

V (x0) = min
uN (·)∈UN

U

JN (x0, u
N (·)) + x(N)TPF x(N)

subject to dynamics & init. cond.

⇝ We have rewritten the infinite dimensional problem as
a finite dimensional optimization problem

The optimal open loop input is given by

u⋆(·) = (u⋆
N (0), . . . , u⋆

N (N − 1),Kx⋆(N),Kx⋆(N + 1), . . .)

Note that:
u⋆ and V (x) are only implicitly known as the solution
of the optimization problem.

The equivalence of the OCPs needs to be understood
with caution! It relies on the nontrivial assumption that
x⋆(N) ∈ XF

Alternatively, consider terminal constraints

min
uN (·)∈UN

U

JN (x0, uN (·)) + x(N)TPF x(N)

subject to dynamics & init. cond., x(N) ∈ XF

However

▶ in this case the optimal solution might not be
optimal with respect to the cost function (i.e., it
might be cheaper to reach XF in more than N
steps)

▶ the optimization problem is infeasible if it is not
possible to reach the set XF in N steps

⇝ These ideas are extended in MPC (in the next chapter)!
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= min
uN (·)∈UN

U

JN (x0, uN (·)) + x(N)TPF x(N)

V (x0) = min
uN (·)∈UN

U

JN (x0, u
N (·)) + x(N)TPF x(N)

subject to dynamics & init. cond.

⇝ We have rewritten the infinite dimensional problem as
a finite dimensional optimization problem

The optimal open loop input is given by

u⋆(·) = (u⋆
N (0), . . . , u⋆

N (N − 1),Kx⋆(N),Kx⋆(N + 1), . . .)

Note that:
u⋆ and V (x) are only implicitly known as the solution
of the optimization problem.

The equivalence of the OCPs needs to be understood
with caution! It relies on the nontrivial assumption that
x⋆(N) ∈ XF

Alternatively, consider terminal constraints

min
uN (·)∈UN

U

JN (x0, uN (·)) + x(N)TPF x(N)

subject to dynamics & init. cond., x(N) ∈ XF

However

▶ in this case the optimal solution might not be
optimal with respect to the cost function (i.e., it
might be cheaper to reach XF in more than N
steps)

▶ the optimization problem is infeasible if it is not
possible to reach the set XF in N steps

⇝ These ideas are extended in MPC (in the next chapter)!
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Introduction to Nonlinear Control: Stability, control design, and estimation

Part I: Dynamical Systems

1. Nonlinear Systems -
Fundamentals & Examples

2. Nonlinear Systems - Stability
Notions

3. Linear Systems and Linearization

4. Frequency Domain Analysis

5. Discrete Time Systems

6. Absolute Stability

7. Input-to-State Stability

Part II: Controller Design

8. LMI Based Controller and
Antiwindup Designs

9. Control Lyapunov Functions

10. Sliding Mode Control

11. Adaptive Control

12. Introduction to Differential
Geometric Methods

13. Output Regulation

14. Optimal Control

15. Model Predictive Control

Part III: Observer Design & Estimation
16. Observer Design for Linear

Systems

17. Extended & Unscented Kalman
Filter & Moving Horizon
Estimation

18. Observer Design for Nonlinear
Systems
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