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Model Predictive Control & the Receding Horizon Principle

Past Future

x(k)

k k +N

Feedback µ

Predicted state trajectory
Reference
trajectory

Predicted
input trajectory

Closed-loop trajectory

Prediction horizon N

MPC is also known as
predictive control

receding horizon control

rolling horizon control

We consider discrete time systems

x+ = f(x, u), x(0) = x0 ∈ Rn

with f : Rn × Rm → Rn f(0, 0) = 0.
State constraints x ∈ X ⊂ Rn

Input constraints u ∈ U(x) ⊂ Rm

If U(x) is independent of x we write U = U(x)
We combine the state and input constraints through

D = X× U(x)

By assumption (0, 0) ∈ D
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The Basic MPC Algorithm
Prediction horizon: N ∈ N ∪ {∞}
Set of feasible input trajectories of length N (depending on x0):

UN
D =

uN (·) : N[0,N−1] → Rm

∣∣∣∣∣∣∣
x(0) = x0,

x(k + 1) = f(x(k), u(k)),
(x(k), u(k)) ∈ D,

∀ k ∈ N[0,N−1]


We sometimes write uN (·;x0) = uN (·) to highlight the dependence on
the initial condition x0. For clarity, note that

uN (·) = [uN (0), uN (1), u(2), . . . , uN (N − 1)]

Cost function: JN : Rn × UN
D → R ∪ {∞},

JN (x0, uN (·)) =
∑N−1

i=0 ℓ(x(i), u(i))

(with running costs ℓ : Rn × Rm → R)

Terminal cost F : Rn → R and terminal constraints XF ⊂ Rn

Optimal control problem (OCP)

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

(⇝ finite dimensional optimization problem if N is finite)

Even if VN : Rn → R ∪ {∞} is not
known explicitly, for a given
x0 ∈ Rn, the function VN (·) can be
evaluated in x0 by solving the OCP.

Note that, JN and VN are defined
as extended real valued functions
which satisfy JN (x0, uN (·)) = ∞
and VN (x0) = ∞ whenever UN

D = ∅
(i.e., when the OCP is infeasible).

Here and in the following assume
that the minimum in the OCP is
attained

Optimal open-loop input trajectory
u⋆
N (·;x0) ∈ UN

D s.t. x(N) ∈ XF &

VN (x0)=JN (x0, u
⋆
N (·;x0))+F (x(N))

u⋆
N (·;x0) is used to iteratively define

a feedback law µN , i.e.,

µN (x0) = u⋆
N (0;x0)

xµN (k + 1)=f(xµN (k), µN (x(k))
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The Basic MPC Algorithm (Part 2)

Input: Measurement of the initial condition x(0); prediction horizon N ∈ N ∪ {∞};
running cost ℓ : Rn+m → R; constraints D ⊂ Rn+m; terminal cost F : Rn → R and
terminal constraints XF ⊂ Rn.

For k = 0, 1, 2, . . .

1 Measure the current state of the system x+ = f(x, u) and define x0 = x(k).
2 Solve the optimal control problem

VN (x0) = min
uN (·)∈UN

D

JN (x0, uN (·)) + F (x(N))

subject to dyn. & init. cond. and x(N) ∈ XF

to obtain the open-loop input u⋆
N (·;x0).

3 Define the feedback law

µN (x(k)) = u⋆
N (0;x0).

4 Compute x(k + 1) = f(x(k), µN (x(k))), increment k to k + 1 and go to 1.
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MPC Example

Consider x+ = Ax+Bu with unstable origin and

A =

[ 6
5

6
5

− 1
2

6
5

]
and B =

[
1
1
2

]
Prediction horizon: N = 5

The running cost: ℓ(x, u) = xT x+ 5u2

Constraints: u ∈ U = [−2.5, 2.5], x ∈ R2 (i.e.,
D = R2 × U)

Terminal cost & constraints: F (x) = xT x, XF = R2.
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Now, use the terminal constraint XF = {0} (which
makes F (x) superfluous)

Prediction horizon N = 11 (since for N < 11 the OCP
is not feasible for x0 = [3 3]T )
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MPC Closed-Loop Analysis (Discussion)

Advantage:
MPC can be applied to general nonlinear systems
and constraints can be taken into account directly in
the controller design.

Disadvantage:
Since the feedback law is only defined implicitly, the
analysis of the closed-loop dynamics is rather difficult.

Performance Analysis:
Often the OCP solved in every iteration of the MPC
algorithm is a compromise between numerical
complexity and optimality.

In many applications, one is interested in solving the
OCP for N = ∞.

However the underlying infinite dimensional
optimization problem is usually intractable.

Reasonable questions: What is the relation between
▶ VN (·) (N < ∞) and V∞(·)?
▶ the MPC closed-loop performance

J∞(x0, µN (·)) and V∞(·)?

Here, the MPC closed-loop costs are defined as

J∞(x0, µN (·))=
∞∑

k=0

ℓ(xµN (k), u⋆
N (0;x(k)), x(0) = x0

We assume that ℓ : Rn × Rm → R≥0 is positive
semidefinite

If F (x) = 0 and XF = Rn, then it holds that

VN (x0) = JN (x0, u
⋆
N (·))

≤ JN (x0, (u
⋆
∞(0), . . . , u⋆

∞(N − 1)))

≤ J∞(x0, u
⋆
∞(·)) = V∞(x0) ≤ J∞(x0, µN (·))

It is in general more interesting to establish bounds

J∞(x0, µN (·)) ≤ 1
αN

V∞(x0) ∀ x ∈ Rn

for an αN ∈ (0, 1].⇝ level of suboptimality

For example, if αN = 1
2

, the MPC closed loop cost is
at most twice the infinite horizon optimal control cost.

Under appropriate assumptions, one can expect
αN → 1 for N → ∞.

⇝ Out of the scope of this lecture
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Closed Loop Stability Properties

Consider:

x+ = f(x, µN (x))

A standard control application of MPC:
Stabilization of an equilibrium pair (xe, ue) ∈ X× U
Reasonable running costs: (Q ≥ 0, R ≥ 0):

ℓ(x, u) = (x− xe)TQ(x− xe) + (u− ue)TR(u− ue)

⇝ How to ensure asymptotic stability of xe (if µN (·) is
not known explicitly)?

A sufficient condition:
Stability follows if VN is a Lyapunov function, i.e.,

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{xe}

Even though VN and µN are only known implicitly,
conditions on f , N ∈ N ∪ {∞}, ℓ, F and XF can be
derived, to ensure that VN is a Lyapunov function

⇝ Often relies on the principle of optimality and dynamic
programming

A sufficient condition using XF = {xe}:
If XF = {xe} and ℓ(x, u) > ℓ(0, 0) = 0 for all
(x, u) ̸= (xe, ue) then VN is a Lyapunov function

(W.l.o.g. we assume that (xe, ue) = (0, 0)) Then for
all x0 ∈ X it holds that

VN (x0) = JN (x0, u
⋆
N (·;x0)) =

N−1∑
i=0

ℓ(x(i), u⋆
N (i;x0))

=ℓ(x(0), u⋆
N (0;x0))+

N−1∑
i=1

ℓ(x(i), u⋆
N (i;x0))+ℓ(x(N), 0)

≥ ℓ(x(0), u⋆
N (0;x0)) + VN (f(x0, u

⋆
N (0;x0)).

⇝ Since ℓ(x0, u) > 0 for x0 ̸= 0 it follows that

VN (f(x, µN (x))) < VN (x) ∀x ∈ X\{0}

However: Here, we have assumed (or need to
assume) that the optimization problem is feasible for
all initial values x0 ∈ X!
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all initial values x0 ∈ X!
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Viability & Recursive Feasibility

Note that:
If X ̸= Rn then the OCP may be infeasible.

To define implementable feedback laws it is
necessary that the OCP is feasible for all k ∈ N.

⇝ We need to discuss viability and recursive feasibility.

Definition (Viability)
Consider x+ = f(x, u) together with X ⊂ Rn and
U(x) ⊂ Rm for all x ∈ X. The set X is called viable if

∀ x ∈ X ∃ u ∈ U(x) such that f(x, u) ∈ X.

A viable set X is also called a control invariant set.

Example

For a ∈ R, consider x+ = ax+ u

X = [−1, 1] and U = [−1, 1]

Example (continued)
Case 1: |a| ≤ 1

The origin is asymptotically stable (for u = 0)

For u = 0 it holds that |x+| ≤ |x| ≤ 1

∀ x ∈ X ∃ u ∈ U (namely u = 0) such that x+ ∈ X.
Case 2: |a| ∈ (1, 2]

Define u(x) = − sign(a)x

Then, for all x ∈ X, x+ satisfies

|x+| = |ax− sign(a)x| = |a− sign(a)| · |x|
= ||a| − 1| · |x| ≤ |x| ≤ 1⇝ X is viable

Case 3: |a| > 2

Consider x = sign(a).

For u = 0, x+ satisfies x+ = a sign(a) = |a| > 2.

The best we can is to select u = −1. Thus
x+ = a sign(a)− 1 = |a| − 1 > 1

⇝ For |a| > 2, the set X is not viable.
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Definition (Recursive feasibility)
Consider the basic MPC Algorithm with

input constraints U
set of initial states XN

rf ⊂ X

XN
rf is called recursively feasible if feasibility of the OCP for

x(0) = x0 ∈ XN
rf implies feasibility of the OCP for all k ∈ N.

(Note that: Recursive feasibility depends on the prediction
horizon N ∈ N.)
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Model Predictive Control Schemes in the literature

Model Predictive Control Schemes: (not a comprehensive list)

MPC for Time-Varying Systems & Reference Tracking

Linear MPC

Nonlinar MPC

MPC Without Terminal Costs & Terminal Constraints
(a.k.a. unconstrained MPC)

Explicit MPC

Economic MPC

Robust MPC

Tube Based MPC

Stochastic MPC

Chance constraint MPC

Distributed MPC

Multi-step MPC
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Introduction to Nonlinear Control: Stability, control design, and estimation

Part I: Dynamical Systems

1. Nonlinear Systems -
Fundamentals & Examples

2. Nonlinear Systems - Stability
Notions

3. Linear Systems and Linearization

4. Frequency Domain Analysis

5. Discrete Time Systems

6. Absolute Stability

7. Input-to-State Stability

Part II: Controller Design

8. LMI Based Controller and
Antiwindup Designs

9. Control Lyapunov Functions

10. Sliding Mode Control

11. Adaptive Control

12. Introduction to Differential
Geometric Methods

13. Output Regulation

14. Optimal Control

15. Model Predictive Control

Part III: Observer Design & Estimation
16. Observer Design for Linear

Systems

17. Extended & Unscented Kalman
Filter & Moving Horizon
Estimation

18. Observer Design for Nonlinear
Systems
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