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Classical Observer Design
So far:

The concepts so far rely on the knowledge of the state
x ∈ Rn.

The full state x is in general not known and only the
output y ∈ Rp is available.

⇝ A controller design can not, in general, rely on the full
state x.

⇝ An estimate x̂ of the state needs to be derived
(observability, detectibility)

If x̂(t) → x(t) for t → ∞, can x̂ be used for the
definition of a feedback controller u(x̂)?

Consider Linear systems:

ẋ = Ax+Bu, x(0) ∈ Rn,

y = Cx+Du

We assume that y ∈ Rp and u ∈ Rm are known,
while the internal state x ∈ Rn and the initial condition
x(0) are unknown.

Assume that the matrix A is Hurwitz.

Introduce observer dynamics as a copy of the system

˙̂x = Ax̂+Bu, x̂(0) ∈ Rn

▶ x̂ ∈ Rn estimate of the state x ∈ Rn

▶ Estimation error e = x− x̂

Error dynamics:

ė = ẋ− ˙̂x = Ax+Bu−Ax̂−Bu = A(x− x̂) = Ae

x̂(t) → x(t) ⇔ e(t) → 0 ⇔ A Hurwitz

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 3) Observer Design for Linear Systems 2 / 7



Classical Observer Design
So far:

The concepts so far rely on the knowledge of the state
x ∈ Rn.

The full state x is in general not known and only the
output y ∈ Rp is available.

⇝ A controller design can not, in general, rely on the full
state x.

⇝ An estimate x̂ of the state needs to be derived
(observability, detectibility)

If x̂(t) → x(t) for t → ∞, can x̂ be used for the
definition of a feedback controller u(x̂)?

Consider Linear systems:
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Luenberger Observers

Consider

ẋ = Ax+Bu, x(0) ∈ Rn, (or x+ = Ax+Bu)

y = Cx+Du

Define observer dynamics:

˙̂x = Ax̂+Bu− L(y − ŷ),

ŷ = Cx̂+Du.

output injection term L ∈ Rn×p

Estimation error: e = x− x̂

Error dynamics:

ė = ẋ− ˙̂x

= Ax+Bu−Ax̂−Bu+ L(Cx+Du− Cx̂−Du)

= Ae+ LCe = (A+ LC)e

⇝ The error dynamics are independent of u

A+ LC has the same eigenvalues as
(A+ LC)T = AT + CTLT

⇝ If (A,C) is observable, the poles of A+ LC can be
placed arbitrarily, i.e., L can be defined such that
A+ LC is Hurwitz.

⇝ If (A,C) is detectable, then there exists L such that
A+ LC is Hurwitz.

See pole placement

x can be approximated through x̂

Controller design u = Kx̂?
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ė = ẋ− ˙̂x

= Ax+Bu−Ax̂−Bu+ L(Cx+Du− Cx̂−Du)

= Ae+ LCe = (A+ LC)e

⇝ The error dynamics are independent of u

A+ LC has the same eigenvalues as
(A+ LC)T = AT + CTLT

⇝ If (A,C) is observable, the poles of A+ LC can be
placed arbitrarily, i.e., L can be defined such that
A+ LC is Hurwitz.

⇝ If (A,C) is detectable, then there exists L such that
A+ LC is Hurwitz.

See pole placement

x can be approximated through x̂

Controller design u = Kx̂?

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 3) Observer Design for Linear Systems 3 / 7



Luenberger Observers & Controller design

Consider

ẋ = Ax+Bu, x(0) ∈ Rn

y = Cx+Du

Define observer dynamics:

˙̂x = Ax̂+Bu− L(y − ŷ),

ŷ = Cx̂+Du.

Error dynamics:

ė = (A+ LC)e

Controller design:

u(x̂) = Kx̂, K ∈ Rm×n

We can rewrite the plant dynamics:

ẋ = Ax+Bu(x̂) = Ax+BKx̂

= Ax+BK(x+ e)

= (A+BK)x+BKe.

Overall closed loop system[
ẋ
ė

]
=

[
A+BK BK

0 A+ LC

] [
x
e

]
If (A,B) is controllable and (A,C) is observable, we
can place the poles of the closed-loop system
arbitrarily by choosing K and L.

The convergence |x(t)| → 0 and |e(t)| → 0 for
t → ∞ can be guaranteed by designing L and K
individually.⇝ separation principle

(The separation principle is only true for the
asymptotic behavior)

Alternative representation in terms of x and x̂:[
ẋ
˙̂x

]
=

[
A BK

−LC A+BK + LC

] [
x
x̂

]
⇝While the separation principle is not visible the dynamics
capture the same information.
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ẋ = Ax+Bu(x̂) = Ax+BKx̂

= Ax+BK(x+ e)

= (A+BK)x+BKe.

Overall closed loop system[
ẋ
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ŷ = Cx̂+Du.

Error dynamics:
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Minimum Energy Estimator

Recall
We have discussed optimal control for linear systems

Can we derive an optimal estimator (in terms of
minimal energy)?

Consider a perturbed linear system:

ẋ = Ax+Bu+ B̄v

y = Cx+Du+ w

disturbance: v(·) : R → Rq (model uncertainty)

measurement noise: w(·) : R → Rp (depending on
the sensors)

The minimum energy estimation problem:
For given u(·), y(·), find x̄ : R≤t0 → Rn for t0 ≥ 0,
which satisfies the dynamics

˙̄x = Ax̄+Bu+ B̄v

y = Cx̄+Du+ w

an which minimizes the cost function

JMEE(x̄(t0), v(·)) =
∫ t0

−∞
w(τ)TQw(τ) + v(τ)TRv(τ)dτ

Note that:
Design parameters: Q ∈ Sp

>0, R ∈ Sq
>0

JMEE(x̄(t0), v(·)) is a function of v(·) but not w(·):

JMEE(x̄(t0), v(·)) =
∫ t0

−∞
vTRv

+ (Cx̄+Du− y)TQ(Cx̄+Du− y)dτ

Given u(·), y(·), find disturbance v(·) with minimum energy
and an estimated state x̄(t0) that explains the observed

inputs and outputs.

Q large: penalize noise w(·); neglect disturbance

R large: penalize disturbance v(·); neglect noise
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Theorem (The minimum energy estimator)

Consider the perturbed linear system and assume
that (A, B̄) is controllable and (A,C) is detectable.

Consider the optimization problem where the cost
function is defined through positive definite matrices
Q ∈ Sp

>0 and R ∈ Sq
>0.

Then there exists S ∈ Sn
>0 to the dual algebraic

Riccati equation

AS + SAT + B̄R−1B̄T − SCTQCS = 0

such that A− LC is Hurwitz, where L = SCTQ.

The minimum energy estimator is given by

˙̂x = Ax̂+Bu+ L(y − Cx̂−Du)

and the initial condition x̂(t0) = x̄0, t0 ∈ R≥0.
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Minimum Energy Estimator (and the Kalman Filter)

Remarks:
The minimum energy estimator is derived using the
deterministic setting

In the stochastic setting the minimum energy
estimator is related to the (cont. time) Kalman filter.

Consider

ẋ = Ax+Bu+ B̄v

y = Cx+Du+ w

Assume v(·) and w(·) represent functions of
zero-mean Gaussian white noise with covariance
matrices satisfying

E[v(t)v(τ)T ] = δ(t− τ)R−1,

E[w(t)w(τ)T ] = δ(t− τ)Q−1,

E[v(t)w(τ)T ] = 0

for all t, τ ∈ R and Q > 0, R > 0.

Here:
expected value: E[·]:
Dirac delta function: δ : R → R ∪ {∞}

δ(t) =

{
∞, t = 0
0, t ̸= 0

and
∫ ∞

−∞
δ(t)dt = 1.

Under these conditions
x̂ obtained through the minimum energy estimator
minimizes the expected value

lim
t→∞

E
[
|x(t)− x̂(t)|2

]
(which is used to derive the Kalman filter)

Similarly, the minimum energy estimator and the Kalman
filter can be derived in the discrete time setting.
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Introduction to Nonlinear Control: Stability, control design, and estimation

Part I: Dynamical Systems

1. Nonlinear Systems -
Fundamentals & Examples

2. Nonlinear Systems - Stability
Notions

3. Linear Systems and Linearization

4. Frequency Domain Analysis

5. Discrete Time Systems

6. Absolute Stability

7. Input-to-State Stability

Part II: Controller Design

8. LMI Based Controller and
Antiwindup Designs

9. Control Lyapunov Functions

10. Sliding Mode Control

11. Adaptive Control

12. Introduction to Differential
Geometric Methods

13. Output Regulation

14. Optimal Control

15. Model Predictive Control

Part III: Observer Design & Estimation
16. Observer Design for Linear

Systems

17. Extended & Unscented Kalman
Filter & Moving Horizon
Estimation

18. Observer Design for Nonlinear
Systems
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