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Extended Kalman Filter – Continuous time setting

Consider (nonlinear) system with (nonlinear) output:

ẋ(t) = f(x(t), u(t)), x(0) ∈ Rn

y(t) = h(x(t)).

Consider observer dynamics:

˙̂x(t) = f(x̂(t), u(t)) + L(t)(y(t)− h(x̂(t)))

with
state estimate x̂ ∈ Rn

L(·) time-dependent output injection term to be
designed

Observer design:
Error e = x− x̂ and error dynamics

ė = f(x, u)− f(x̂, u)− L(t)(h(x)− h(x̂))

Define (time-varying linearization in (x̂, u))

A(t) =
∂f

∂x
(x̂(t), u(t)) and C(t) =

∂h

∂x
(x̂(t))

Note that: It holds that

f(e+ x̂, u)− f(x̂, u) = 0 for e = 0

∂
∂e

(f(x, u)− f(x̂, u))
∣∣
e=0

= ∂
∂e

f(e+ x̂, u)
∣∣
e=0

= A(t)

∂
∂e

(h(x)− h(x̂))
∣∣
e=0

= ∂
∂e

h(e+ x̂)
∣∣
e=0

= C(t)

The Taylor approximation at e = 0 w.r.t. x̂ can be written as

ė = (A(t)− L(t)C(t))e+∆(e, x, u)

where ∆(e, x, u) denotes the error term.

Consider candidate Lyapunov function V : R× Rp → R≥0

V (e(t)) = e(t)TP−1(t)e(t), for P > 0.

Lemma
Consider P : R → Rn×n, positive definite, cont. diff. Then

Ṗ−1(t) = −P−1(t)Ṗ (t)P−1(t).
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ẋ(t) = f(x(t), u(t)), x(0) ∈ Rn

y(t) = h(x(t)).

Consider observer dynamics:

˙̂x(t) = f(x̂(t), u(t)) + L(t)(y(t)− h(x̂(t)))

with
state estimate x̂ ∈ Rn

L(·) time-dependent output injection term to be
designed

Observer design:
Error e = x− x̂ and error dynamics
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Extended Kalman Filter: the candidate Lyapunov function

Derivative of the candidate Lyapunov function: (Recall: ė = (A(t)− L(t)C(t))e+∆(e, x, u))

V̇ (e) = ėTP−1e+ eT Ṗ−1e+ eTP−1ė = ((A− LC)e+∆)T P−1e+ eTP−1 ((A− LC)e+∆)− eTP−1ṖP−1e

= eTP−1
(
P (A− LC)T + (A− LC)P − Ṗ

)
P−1e+ 2eTP−1∆

Select L(t) = P (t)C(t)TQ for Q > 0. Then:

V̇ (e) = eTP−1
(
PAT +AP − 2PCTQCP − Ṗ

)
P−1e+ 2eTP−1∆

If P (t) satisfies the differential Riccati equation (P (t0) > 0, R > 0)

Ṗ (t) = P (t)A(t)T +A(t)P (t)− P (t)C(t)TQC(t)P (t) +R−1

then

V̇ (e) = −eTP−1
(
PCTQCP +R−1

)
P−1e+ 2eTP−1∆

Note that:
For e ̸= 0 small, it holds that V̇ (e) < 0

Thus, the e = 0 is locally exponentially stable.
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(Continuous time) Extended Kalman Filter: Summary

Consider (nonlinear) system with (nonlinear) output:

ẋ(t) = f(x(t), u(t)), x(0) ∈ Rn

y(t) = h(x(t)).

Observer dynamics:

˙̂x(t) = f(x̂(t), u(t)) + L(t)(y(t)− h(x̂(t)))

Error dynamics

ė = f(x, u)− f(x̂, u)− L(t)(h(x)− h(x̂))

Note that:
For nonlinear systems, local exponential stability
x̂(t) → x(t) is obtained

Equations of the extended Kalman filter:

˙̂x(t) = f(x̂(t), u(t)) + P (t)
(

∂h
∂x

(x̂(t))
)T

Q(y(t)− h(x̂(t)))

Ṗ (t) = P
(

∂f
∂x

(x̂(t), u(t))
)T

+
(

∂f
∂x

(x̂(t), u(t))
)
P − P

(
∂h
∂x

(x̂(t))
)T

Q
(

∂h
∂x

(x̂(t))
)
P +R−1

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 3) Extended & Unscented Kalman Filter and MHE 4 / 5



(Continuous time) Extended Kalman Filter: Summary

Consider (nonlinear) system with (nonlinear) output:
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Concluding remarks

The extended Kalman filters is based on the
linearization around the current state estimate x̂

Higher order terms can also be considered in the
observer design (⇝ unscented Kalman filter)

Derivations can also be done in the discrete-time
setting

Constraints can be taken into account through moving
horizon estimation (dual to MPC)
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