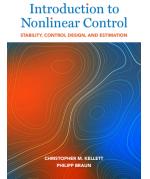
Introduction to Nonlinear Control

Stability, control design, and estimation

Christopher M. Kellett & Philipp Braun



Introduction to Nonlinear Control: Stability, control design, and estimation

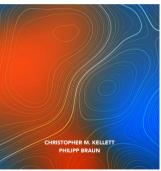
Part I: Dynamical Systems

- 5 Discrete Time Systems

 - 5.1 Discrete Time Systems–Fundamentals5.2 Sampling: From Continuous to Discrete Time
 - 5.2.1 Discretization of Linear Systems
 - 5.2.2 Higher Order Discretization Schemes
 - 5.3 Stability Notions
 - 5.3.1 Lyapunov Characterizations
 - 5.3.2 Linear Systems
 - 5.3.3 Stability Preservation of Discretized Systems
 - 5.4 Controllability and Observability
 - 5.5 Exercises
 - 5.6 Bibliographical Notes and Further Reading

Introduction to Nonlinear Control

STABILITY, CONTROL DESIGN, AND ESTIMATION



1/8

Discrete Time Systems – Fundamentals

Discrete time system (with output):

$$x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n$$

 $y_d(k) = H(x_d(k), u_d(k))$

Continuous time system (with output):

$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0 \in \mathbb{R}^n$$

 $y(t) = h(x(t), u(t))$

Discrete Time Systems – Fundamentals

Discrete time system (with output):

$$x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n$$

 $y_d(k) = H(x_d(k), u_d(k))$

Time-varying discrete time system ($k \ge k_0 \ge 0$):

$$x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n$$

Time invariant discrete time systems without input:

$$x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,$$

Shorthand notation for difference equations:

$$x_d^+ = F(x_d, u_d),$$

Continuous time system (with output):

$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0 \in \mathbb{R}^n$$

 $y(t) = h(x(t), u(t))$

Time-varying continuous time system:

$$\dot{x}(t) = f(t, x(t)), \quad x_d(t_0) = x_0 \in \mathbb{R}^n$$

Time invariant discrete time systems without input:

$$\dot{x}(t) = f(x(t)), \quad x(0) = x_0 \in \mathbb{R}^n,$$

Shorthand notation for differential equations:

$$\dot{x} = f(x, u)$$

Discrete Time Systems – Fundamentals

Discrete time system (with output):

$$x_d(k+1) = F(x_d(k), u_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n$$

 $y_d(k) = H(x_d(k), u_d(k))$

Time-varying discrete time system ($k \ge k_0 \ge 0$):

$$x_d(k+1) = F(k, x_d(k)), \quad x_d(k_0) = x_{d,0} \in \mathbb{R}^n$$

Time invariant discrete time systems without input:

$$x_d(k+1) = F(x_d(k)), \quad x_d(0) = x_{d,0} \in \mathbb{R}^n,$$

Shorthand notation for difference equations:

$$x_d^+ = F(x_d, u_d),$$

Definition (Equilibrium)

- The point $x_d^e \in \mathbb{R}^n$ is called equilibrium if $x_d^e = F(x_d^e)$ or $x_d^e = F(k, x_d^e)$ for all $k \in \mathbb{N}$ is satisfied.
- The pair $(x_d^e, u_d^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called equilibrium pair of the system if $x_d^e = F(x_d^e, u_d^e)$ holds.

Continuous time system (with output):

$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0 \in \mathbb{R}^n$$

 $y(t) = h(x(t), u(t))$

Time-varying continuous time system:

$$\dot{x}(t) = f(t, x(t)), \quad x_d(t_0) = x_0 \in \mathbb{R}^n$$

Time invariant discrete time systems without input:

$$\dot{x}(t) = f(x(t)), \quad x(0) = x_0 \in \mathbb{R}^n,$$

Shorthand notation for differential equations:

$$\dot{x} = f(x, u)$$

Definition (Equilibrium)

- The point $x^e \in \mathbb{R}^n$ is called equilibrium if $0 = f(x^e)$ or $0 = f(t, x^e)$ for all $t \in \mathbb{R}_{>0}$ is satisfied.
- The pair $(x^e, u^e) \in \mathbb{R}^n \times \mathbb{R}^m$ is called equilibrium pair of the system if $0 = f(x^e, u^e)$ holds.

Derivative for continuously differentiable function:

$$\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

3/8

Derivative for continuously differentiable function:

$$\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

Difference quotient (for $\Delta > 0$ small):

$$\frac{x(t+\Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))$$

or equivalently

$$x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$$

Derivative for continuously differentiable function:

$$\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

Difference quotient (for $\Delta > 0$ small):

$$\frac{x(t+\Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))$$

or equivalently

$$x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$$

Approximated discrete time system (identify t with $k \cdot \Delta$)

$$x_d^+ = F(x_d, u_d) = x_d + \Delta f(x_d, u_d)$$

→ This discretization is known as (explicit) *Euler method*.

Derivative for continuously differentiable function:

$$\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

Difference quotient (for $\Delta > 0$ small):

$$\frac{x(t+\Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))$$

or equivalently

$$x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$$

Approximated discrete time system (identify t with $k \cdot \Delta$)

$$x_d^+ = F(x_d, u_d) = x_d + \Delta f(x_d, u_d)$$

→ This discretization is known as (explicit) *Euler method*.

Note that:

- Continuous time: $x: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ and $u: \mathbb{R}_{\geq 0} \to \mathbb{R}^m$
- Discrete time: $x_d: \mathbb{N} \to \mathbb{R}^n$ and $u_d: \mathbb{N} \to \mathbb{R}^m$

Derivative for continuously differentiable function:

$$\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

Difference quotient (for $\Delta > 0$ small):

$$\frac{x(t+\Delta) - x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t), u(t))$$

or equivalently

$$x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$$

Approximated discrete time system (identify t with $k \cdot \Delta$)

$$x_d^+ = F(x_d, u_d) = x_d + \Delta f(x_d, u_d)$$

→ This discretization is known as (explicit) *Euler method*.

Note that:

- Continuous time: $x: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ and $u: \mathbb{R}_{\geq 0} \to \mathbb{R}^m$
- Discrete time: $x_d: \mathbb{N} \to \mathbb{R}^n$ and $u_d: \mathbb{N} \to \mathbb{R}^m$

Zero-order hold: for all $k \in \mathbb{N}$, for all $t \in [0, \Delta)$

$$x_d(k) = x(\Delta k) = x(t + \Delta k)$$

$$u_d(k) = u(\Delta k) = u(t + \Delta k)$$

(restrict \boldsymbol{x} and \boldsymbol{u} to piecewise constant functions)

Derivative for continuously differentiable function:

$$\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

Difference quotient (for $\Delta > 0$ small):

$$\frac{x(t+\Delta)-x(t)}{\Delta}\approx \frac{\frac{d}{dt}x(t)=\dot{x}(t)=f(x(t),u(t))$$

or equivalently

$$x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$$

Approximated discrete time system (identify t with $k \cdot \Delta$)

$$x_d^+ = F(x_d, u_d) = x_d + \Delta f(x_d, u_d)$$

→ This discretization is known as (explicit) *Euler method*.

Note that:

- Continuous time: $x: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ and $u: \mathbb{R}_{\geq 0} \to \mathbb{R}^m$
- Discrete time: $x_d: \mathbb{N} \to \mathbb{R}^n$ and $u_d: \mathbb{N} \to \mathbb{R}^m$

Zero-order hold: for all $k \in \mathbb{N}$, for all $t \in [0, \Delta)$

$$x_d(k) = x(\Delta k) = x(t + \Delta k)$$

$$u_d(k) = u(\Delta k) = u(t + \Delta k)$$

(restrict \boldsymbol{x} and \boldsymbol{u} to piecewise constant functions)

Sample-and-hold input: (with sampling rate Δ)

$$u(\Delta k) = u(t + \Delta k), \quad k \in \mathbb{N}, \quad \forall t \in [0, \Delta)$$

Derivative for continuously differentiable function:

$$\frac{d}{dt}x(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta) - x(t)}{\Delta}$$

Difference quotient (for $\Delta > 0$ small):

$$\frac{x(t+\Delta)-x(t)}{\Delta} \approx \frac{d}{dt}x(t) = \dot{x}(t) = f(x(t),u(t))$$

or equivalently

$$x(t + \Delta) \approx x(t) + \Delta f(x(t), u(t))$$

Approximated discrete time system (identify t with $k \cdot \Delta$)

$$x_d^+ = F(x_d, u_d) = x_d + \Delta f(x_d, u_d)$$

→ This discretization is known as (explicit) Euler method.

Note that:

- Continuous time: $x: \mathbb{R}_{\geq 0} \to \mathbb{R}^n$ and $u: \mathbb{R}_{\geq 0} \to \mathbb{R}^m$
- Discrete time: $x_d: \mathbb{N} \to \mathbb{R}^n$ and $u_d: \mathbb{N} \to \mathbb{R}^m$

Zero-order hold: for all $k \in \mathbb{N}$, for all $t \in [0, \Delta)$

$$x_d(k) = x(\Delta k) = x(t + \Delta k)$$

$$u_d(k) = u(\Delta k) = u(t + \Delta k)$$

(restrict x and u to piecewise constant functions)

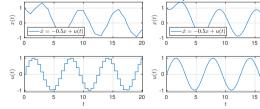
Sample-and-hold input: (with sampling rate Δ)

$$u(\Delta k) = u(t + \Delta k), \quad k \in \mathbb{N}, \quad \forall \ t \in [0, \Delta)$$

Digital controller:

 apply a piecewise constant sample-and-hold input to a continuous time system.

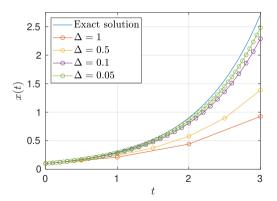
Solution corresponding to sample-and-hold input ($\Delta=1$) and continuous input



Euler Discretization Example (and Higher Order Discretization Schemes)

Approximation of $\dot{x} = 1.1x$

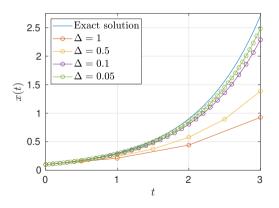
Euler discretization: $x^+ = (1 + 1.1\Delta)x$



Euler Discretization Example (and Higher Order Discretization Schemes)

Approximation of $\dot{x} = 1.1x$

Euler discretization:
$$x^+ = (1 + 1.1\Delta)x$$

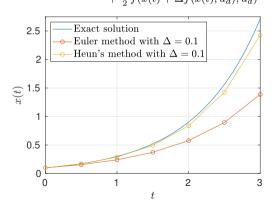


• Euler method:

$$x(t + \Delta) \approx x(t) + \Delta f(x(t), u_d)$$

Heun method:

$$x(t+\Delta) \approx x(t) + \frac{\Delta}{2} f(x(t), u_d) + \frac{\Delta}{2} f(x(t) + \Delta f(x(t), u_d), u_d)$$



Stability Notions

Discrete time systems: Consider

$$x^+ = F(x), \qquad x(0) = x_0 \in \mathbb{R}^n$$

Definition

Consider the origin of the discrete time system.

1. (Stability) The origin is *Lyapunov stable* (or simply *stable*) if, for any $\varepsilon>0$ there exists $\delta>0$ such that if $|x(0)|\leq\delta$ then, for all $k\geq0$,

$$|x(k)| \le \varepsilon$$
.

- 2. (Instability) The origin is *unstable* if it is not stable.
- 3. (Attractivity) The origin is attractive if there exists $\delta>0$ such that if $|x(0)|<\delta$ then

$$\lim_{k \to \infty} x(k) = 0.$$

4. (Asymptotic stability) The origin is asymptotically stable if it is both stable and attractive.

Continuous time systems: Consider

$$\dot{x} = f(x), \qquad x(0) = x_0 \in \mathbb{R}^n$$

Definition

Consider the origin of the continuous time system.

1. (Stability) The origin is *Lyapunov stable* (or simply *stable*) if, for any $\varepsilon>0$ there exists $\delta>0$ such that if $|x(0)|\leq\delta$ then, for all $t\geq0$,

$$|x(t)| \le \varepsilon$$
.

- 2. (Instability) The origin is unstable if it is not stable.
- 3. (Attractivity) The origin is attractive if there exists $\delta>0$ such that if $|x(0)|<\delta$ then

$$\lim_{t \to \infty} x(t) = 0.$$

4. (Asymptotic stability) The origin is asymptotically stable if it is both stable and attractive.

Lyapunov Characterizations

Consider $x^+ = f(x)$, 0 = f(0), $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a continuous function $V:\mathcal{D}\to\mathbb{R}_{\geq 0}$ and functions $\alpha_1,\alpha_2\in\mathcal{K}_\infty$ such that, for all $x\in\mathcal{D}$,

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$$

$$V(f(x)) - V(x) \le 0$$

$$(1)$$

Then the origin is stable.

Note that

- Decrease condition $V(x^+) = V(f(x)) \le V(x)$
- ullet differentiability of V (or even continuity) is not required

Consider $\dot{x} = f(x)$, 0 = f(0), $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a smooth function $V: \mathcal{D} \to \mathbb{R}_{\geq 0}$ and functions $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathcal{D}$,

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$$

$$\langle \nabla V(x), f(x) \rangle \le 0$$
(2)

Then the origin is stable.

Lyapunov Characterizations

Consider $x^+ = f(x)$, 0 = f(0), $0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a continuous function $V: \mathcal{D} \to \mathbb{R}_{\geq 0}$ and functions $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, for all $x \in \mathcal{D}$,

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$$

$$V(f(x)) - V(x) \le 0$$

$$(1)$$

Then the origin is stable.

Note that

- Decrease condition $V(x^+) = V(f(x)) \le V(x)$
- differentiability of V (or even continuity) is not required

Theorem (Asymptotic stability)

Suppose there exists a continuous function $V: \mathcal{D} \to \mathbb{R}_{\geq 0}$, and functions $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, $\rho \in \mathcal{P}$ satisfying $\rho(s) < s$ for all s > 0, such that, for all $x \in \mathcal{D}$, (1) holds and

$$V(f(x)) - V(x) \le -\rho(V(x)).$$

Then the origin is asymptotically stable.

Consider $\dot{x} = f(x), 0 = f(0), 0 \in \mathcal{D} \subset \mathbb{R}^n$ open.

Theorem (Lyapunov stability theorem)

Suppose there exists a smooth function $V:\mathcal{D}\to\mathbb{R}_{\geq 0}$ and functions $\alpha_1,\alpha_2\in\mathcal{K}_\infty$ such that, for all $x\in\mathcal{D}$,

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)$$

$$\langle \nabla V(x), f(x) \rangle \le 0$$
(2)

Then the origin is stable.

Theorem (Asymptotic stability)

Suppose there exists a smooth function $V:\mathcal{D}\to\mathbb{R}_{\geq 0}$, and functions $\alpha_1,\alpha_2\in\mathcal{K}_\infty$, $\rho\in\mathcal{P}$, such that, for all $x\in\mathcal{D}$, (2) holds and

$$\langle \nabla V(x), f(x) \rangle \le -\rho(V(x)).$$

Then the origin is asymptotically stable.

Linear systems

Consider the discrete time linear system

$$x^{+} = Ax,$$

$$(0) \in \mathbb{R}^n$$

$$x^+ = Ax, \qquad x(0) \in \mathbb{R}^n \qquad [\text{Solution } x(k) = A^k x(0)]$$

Theorem

The following properties are equivalent:

- The origin $x^e = 0$ is exponentially stable;
- The eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of A satisfy $|\lambda_i| < 1$ for all $i = 1, \ldots, n$; and
- **1** For $Q \in \mathcal{S}_{>0}^n$ there exists a unique $P \in \mathcal{S}_{>0}^n$ satisfying the discrete time Lyapunov equation

$$A^T P A - P = -Q.$$

A matrix A which satisfies $|\lambda_i| < 1$ for all i = 1, ..., n is called a Schur matrix.

Consider the continuous time linear system

$$\dot{x} = Ax, \qquad x(0)$$

$$x(0) \in \mathbb{R}^n$$

$$\dot{x} = Ax, \qquad x(0) \in \mathbb{R}^n \qquad [\text{Solution } x(t) = e^{At}x(0)]$$

Theorem

The following properties are equivalent:

- The origin $x^e = 0$ is exponentially stable:
- The eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of A satisfy $\lambda_i \in \mathbb{C}^$ for all $i = 1, \ldots, n$; and
- **3** For $Q \in \mathcal{S}_{\leq 0}^n$ there exists a unique $P \in \mathcal{S}_{\leq 0}^n$ satisfying the continuous time Lyapunov equation

$$A^T P + P A = -Q.$$

A matrix A which satisfies $\lambda_i \in \mathbb{C}^-$ for all $i = 1, \ldots, n$ is called a Hurwitz matrix.

Linear systems

Consider the discrete time linear system

$$x^+ = Ax, \qquad x(0) \in \mathbb{R}^n \qquad [\text{Solution } x(k) = A^k x(0)]$$

Theorem

The following properties are equivalent:

- The origin $x^e = 0$ is exponentially stable;
- ② The eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of A satisfy $|\lambda_i| < 1$ for all $i = 1, \ldots, n$; and

$$A^T P A - P = -Q.$$

A matrix A which satisfies $|\lambda_i| < 1$ for all i = 1, ..., n is called a *Schur matrix*.

Theorem

If the origin of $z^+=Az$ with $A=\left[\frac{\partial F}{\partial x}(x)\right]_{x=0}$ is globally exponentially stable, then the origin of $x^+=F(x)$, 0=F(0), is locally exponentially stable.

Consider the continuous time linear system

$$\dot{x} = Ax, \qquad x(0) \in \mathbb{R}^n \qquad [\text{Solution } x(t) = e^{At}x(0)]$$

Theorem

The following properties are equivalent:

- The origin $x^e = 0$ is exponentially stable;
- ② The eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ of A satisfy $\lambda_i \in \mathbb{C}^-$ for all $i = 1, \ldots, n$; and
- **⑤** For $Q \in S_{>0}^n$ there exists a unique $P \in S_{>0}^n$ satisfying the continuous time Lyapunov equation

$$A^T P + P A = -Q.$$

A matrix A which satisfies $\lambda_i \in \mathbb{C}^-$ for all $i=1,\ldots,n$ is called a *Hurwitz matrix*.

Theorem

If the origin of $\dot{z}=Az$ with $A=\left[\frac{\partial f}{\partial x}(x)\right]_{x=0}$ is globally exponentially stable, then the origin of $\dot{x}=f(x),\,0=f(0)$, is locally exponentially stable.

7/8

Introduction to Nonlinear Control: Stability, control design, and estimation

Part I: Dynamical Systems

- Nonlinear Systems -Fundamentals & Examples
- Nonlinear Systems Stability Notions
- 3. Linear Systems and Linearization
- 4. Frequency Domain Analysis
- 5. Discrete Time Systems
- 6. Absolute Stability
- 7. Input-to-State Stability

Part II: Controller Design

- LMI Based Controller and Antiwindup Designs
- 9. Control Lyapunov Functions
- 10. Sliding Mode Control
- 11. Adaptive Control
- 12. Introduction to Differential Geometric Methods
- 13. Output Regulation
- 14. Optimal Control
- 15. Model Predictive Control

Part III: Observer Design & Estimation

- Observer Design for Linear Systems
- Extended & Unscented Kalman Filter & Moving Horizon Estimation
- Observer Design for Nonlinear Systems