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A Commonly Ignored Design Issue

Linear system: (A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n)

ẋ = Ax+ bu, y = cx,

Feedback interconnection: u = −ky

ẋ = (A− bkc)x,

+
ẋ = Ax+ bu
y = cx

−k

v(t) u(t) y(t)

+ ψ(·) ẋ = Ax+ bu
y = cx

−k

v(t) u(t) y(t)
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Saturation function
sat : R → [−1, 1]:

sat(z) =

−1, for z ≤ −1
z, for z ∈ [−1, 1]
1, for z ≥ 1
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A Commonly Ignored Design Issue (Example: A servo-valve)

Piston

M , f y(t)Load

Spool position ũ(t)

return
Upper

Pressure
source

Lower
return

Deadzone function
dz : R → R:

dz(z) =

 z + 1, for z ≤ −1
0, for z ∈ [−1, 1]

y − 1, for z ≥ 1
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A Commonly Ignored Design Issue (The Lur’e Problem)

Consider the feedback interconnection:

ẋ = Ax+ bu
y = cx

u = −ψ(t, y)

Lur’e problem:
Which conditions on the functions ψ : R≥0 × R → R
guarantee asymptotic stability of the origin?

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R → R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

ψ(t, y)

y

αy

βy
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A Commonly Ignored Design Issue (The Sector Condition)

Common nonlinearities: sign : R → R,

sat(y) =

 −1, for y ≤ −1,
y, for − 1 ≤ y ≤ 1,
1, for y ≥ 1.

dz(y) =

 y + 1, for y ≤ −1,
0, for − 1 ≤ y ≤ 1,

y − 1, for y ≥ 1.

sign(y) =

 −1, for y < 0,
0, for y = 0,
1, for y > 0,

Question:
Which nonlinearity satisfies a sector condition?

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R → R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

ψ(t, y)

y

αy

βy
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Absolute Stability

Definition (Sector condition)
Let α, β ∈ R, α < β, and Ω ⊂ R. A nonlinearity
ψ : R≥0 × R → R satisfies a sector condition if

αy2 ≤ yψ(t, y) ≤ βy2

for all t ≥ 0 and for all y ∈ Ω. For Ω = R we say that the
sector condition is satisfied globally.

Definition (Absolute stability)
Let α, β ∈ R, α < β, and Ω ⊂ R. The Lur’e system

ẋ = Ax− bψ(t, y)

is called absolutely stable (with respect to α, β,Ω) if the
origin is asymptotically stable for all ψ : R≥0 × R → R
satisfying the sector condition for all t ≥ 0 and for all
y0 ∈ Ω.

ψ(t, y)

y

αy

βy

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 6) Absolute Stability 6 / 9



Historical Perspective on the Lur’e Problem

Conjecture (Aizerman’s Conjecture (1949))
Let α, β ∈ R, α < β, and suppose the origin of the linear
system

ẋ = Ax+ bu,

y = cx

is globally asymptotically stable for all linear feedback

u = −ψ(y) = −ky, k ∈ [α, β].

Then the origin is globally asymptotically stable for all
nonlinear feedback in the sector

α ≤
ψ(y)

y
≤ β, y ̸= 0.

⇝ Conjecture was shown to be wrong through
counterexamples.

Conjecture (Kalman’s Conjecture (1957))
Let α, β ∈ R, α < β, and suppose the origin of the linear
system

ẋ = Ax+ bu,

y = cx

is globally asymptotically stable for all linear feedback

u = −ψ(y) = −ky, k ∈ [α, β].

Then the origin is globally asymptotically stable for all
nonlinear feedback belonging to the incremental sector

α ≤ ∂
∂y
ψ(y) ≤ β.

⇝ Conjecture was shown to be wrong through
counterexamples.

C.M. Kellett & P. Braun Introduction to Nonlinear Control (Ch. 6) Absolute Stability 7 / 9



Historical Perspective on the Lur’e Problem

Conjecture (Aizerman’s Conjecture (1949))
Let α, β ∈ R, α < β, and suppose the origin of the linear
system
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Absolute stability through the Circle Criterion and Popov Criterion

Theorem (Circle Criterion)
Suppose (A, b, c) is a minimal realization of G(s) and
ψ(t, y) satisfies the sector condition

αy2 ≤ yψ(t, y) ≤ βy2 ∀ y ∈ R, ∀ t ∈ R≥0.

Then the system is absolutely stable if:
1 α = 0 < β, the Nyquist plot is to the right of the line

Re(s) = − 1
β

, (i.e., to the right of D(0, β)) and G(s)

is Hurwitz;
2 0 < α < β, the Nyquist plot does not enter the disk
D(α, β), and encircles it in the counter-clockwise
direction as many times, N , as there are right-half
plane poles of G(s); or

3 α < 0 < β, the Nyquist plot lies in the interior of the
disk D(α, β), and G(s) is Hurwitz.

Definitions: (Disc in the complex plane)
center σ : R\{0} × R>0 → R
radius r : R\{0} × R>0 → R
for α ̸= 0 and β > 0 we define

σ(α, β) =
1

2

(
1

α
+

1

β

)
, r(α, β) =

sign(α)

2

(
1

α
−

1

β

)
Then, the disc D(·, ·) is defined as

D(α, β) =

{x ∈ C : x = − 1
β
+ jω, ω ∈ R}, α = 0 < β,

{x ∈ C : |x− σ(α, β)| = r(α, β)}, 0 < α < β,
{x ∈ C : |x− σ(α, β)| = r(α, β)}, α < 0 < β.
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Theorem (Popov Criterion)
Suppose A is Hurwitz, (A, b) is controllable, (A, c) is
observable, and ψ(y) satisfies the sector condition

0 ≤ yψ(y) ≤ βy2 ∀ y ∈ R.

Then the Lur’e system with

G(s) = c(sI −A)−1b

is absolutely stable if there is an η ≥ 0 with − 1
η

not an
eigenvalue of A such that

H(s) = 1 + (1 + ηs)βG(s)

is strictly positive real.
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Introduction to Nonlinear Control: Stability, control design, and estimation

Part I: Dynamical Systems

1. Nonlinear Systems -
Fundamentals & Examples

2. Nonlinear Systems - Stability
Notions

3. Linear Systems and Linearization

4. Frequency Domain Analysis

5. Discrete Time Systems

6. Absolute Stability

7. Input-to-State Stability

Part II: Controller Design

8. LMI Based Controller and
Antiwindup Designs

9. Control Lyapunov Functions

10. Sliding Mode Control

11. Adaptive Control

12. Introduction to Differential
Geometric Methods

13. Output Regulation

14. Optimal Control

15. Model Predictive Control

Part III: Observer Design & Estimation
16. Observer Design for Linear

Systems

17. Extended & Unscented Kalman
Filter & Moving Horizon
Estimation

18. Observer Design for Nonlinear
Systems
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